\begin{tabbing} (\=(((((((Unfold `absval` 0) \+ \\[0ex]CollapseTHEN (D 0))$\cdot$) \\[0ex]CollapseTHENM (BoolCasesOnCExp 0 $\leq$z $i$ \-\\[0ex])\=)$\cdot$) \+ \\[0ex]CollapseTHENM (AbReduce 0))$\cdot$) \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n \-\\[0ex]) ((first\_nat 2:n),(first\_nat 3:n)) (first\_tok SupInf:t) inil\_term)))$\cdot$ \end{tabbing}